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Abstract Acid–base homeostasis is a fundamental property of living cells, and its persistent disrup-

tion in human cells can lead to a wide range of diseases. In this study, we conducted a computa-

tional modeling analysis of transcriptomic data of 4750 human tissue samples of 9 cancer types

in The Cancer Genome Atlas (TCGA) database. Built on our previous study, we quantitatively esti-

mated the average production rate of OH� by cytosolic Fenton reactions, which continuously dis-

rupt the intracellular pH (pHi) homeostasis. Our predictions indicate that all or at least a subset of

43 reprogrammed metabolisms (RMs) are induced to produce net protons (H+) at comparable

rates of Fenton reactions to keep the pHi stable. We then discovered that a number of well-

known phenotypes of cancers, including increased growth rate, metastasis rate, and local immune

cell composition, can be naturally explained in terms of the Fenton reaction level and the induced

RMs. This study strongly suggests the possibility to have a unified framework for studies of cancer-

inducing stressors, adaptive metabolic reprogramming, and cancerous behaviors. In addition, strong

evidence is provided to demonstrate that a popular view that Na+/H+ exchangers along with lactic

acid exporters and carbonic anhydrases are responsible for the intracellular alkalization and extra-

cellular acidification in cancer may not be justified.
Introduction

Acid–base homeostasis is a most fundamental property that all
living cells must maintain, as the pH sets the stage for perform-
ing accurately all the biochemistry needed in support of the
ciences /
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livelihood and the functionalities of the cells. pH is an essential
part of probably all cellular processes of a living organism,
which ensures the correct folding of proteins, biomolecular

binding and interactions with the right affinity and specificity,
conducting reactions at the desired rates in enzymatic path-
ways, among other biological functions. In normal human tis-

sue cells, the intracellular (or cytosolic) pH, pHi, is generally
neutral or slightly acidic at the range of 6.8–7.1, while the
extracellular pH, pHe, is slightly basic at� 7.2, with pHi< pHe

[1]. Individual cellular compartments may have distinct pH
levels required for executing their functions, with lysosomes
having the most acidic pH at � 4.0–5.0 and mitochondria hav-
ing the highest pH at � 8.0 [2]. Because of the vital importance

of the pH, all living cells have designated systems to maintain
the stability of their pHi and pHe.

In human cells, a HPO2�
4 /H2PO

�
4 -based and a HCO�

3 /

H2CO3-based buffering system are used to maintain the stabil-
ity of pHi and pHe, respectively, plus a suite of proton (H+)
importers and exporters, such as Vacuolar-type Adenosine

50-triphosphatase (V-ATPase), Naþ=Hþ exchanger, and

Naþ=HCO�
3 symporter. Under physiological conditions, cer-

tain metabolisms may produce large quantities of H+ such
as de novo nucleotide biosynthesis [3] and the Warburg effect
[4], while some other metabolisms may consume H+, such as

the conversion of nicotinamide adenine dinucleotide from its
reduced form (NADH) to its oxidized form (NAD+) [5].
Excess H+ or hydroxide (OH�) or equivalents produced

dynamically by such acidifying or alkalizing processes are gen-
erally absorbed by the pH buffer and/or counterbalanced by
H+ transporters to maintain the stability of the pH.

Persistent pathological conditions such as chronic inflam-

mation are known to disrupt the stability of the local pH;
and extracellular acidosis has been widely reported in diseased
tissues across numerous human illnesses [6–8]. For example,

cells in Alzheimer’s disease tissues are known to be under both
extracellular and intracellular acidosis [9,10]. Similar observa-
tions have been reported in other neurodegenerative diseases

[11]. Diabetes is another example where the diseased tissue
cells have been reported to have more acidic pHe than the
matching healthy tissues [12,13]. Knowing the vital importance

of the cellular pH stability, one could imagine the profound
impacts of such changes on the whole cellular biochemistry.
This is the reason that persistently altered pH has been sug-
gested as a fundamental cause to a wide range of the altered

metabolisms, hence considerable cellular behaviors in neurode-
generative diseases, diabetes, and cancer.

It is noteworthy that for pathological conditions giving rise

to persistent overproduction of H+ or OH�, the pH buffer,
along with the H+ transporters, has only a limited power in
maintaining the pH stability. The reasons are two-fold:

(1) each pH buffer has a fixed capacity, which could absorb
only limited H+ (or OH�) [14,15] persistently generated under
pathological conditions; and (2) H+ transporters generally do
not work in a sustained manner as such transporters fall into

two types, electroneutral cotransporters/antiporters and elec-
trogenic transporters. For electroneutral cotransporters/
antiporters, H+ are released from or loaded into cells at the

expense of extruding or absorbing another ion, e.g., Na+ or
Cl�. Hence their persistent utilization will disrupt the home-
ostasis of the other ion, making them not a sustainable solu-

tion. Similar can be said about a H+ importer or exporter
(or equivalent), since it is electrogenic and its persistent utiliza-
tion will violate the electroneutrality of the host cells, another
fundamental property that cells must keep to remain viable

[16].
Cancer is an intriguing case in terms of the altered pHi and

pHe levels, as it has been well established that the pHi of cancer

tissue cells becomes basic (at � 7.4 or 7.5), while their pHe

becomes acidic (ranging from 6.4 to 6.8) [1], hence a reversal
of pHi < pHe compared to normal tissue cells. Multiple

proposals have been made regarding the possible causes for
the reversal of the pHi and pHe levels. These include
(1) up-regulated H+ exporters such as V-ATPase, Na+/H+

exchangers, and lactic acid exporters in cancer [17–19];

(2) increased utilization of carbonic anhydrases that convert
extracellular CO2 released by cancer cells to HCO�

3 and H+

[20,21]; and (3) hypoxia due to poor blood supply and ‘‘respi-
ratory bursts” by innate immune cells [22]. These proposals

have addressed the possible reasons for the extracellular acido-
sis in cancer tissues, which is probably needed by the local
immune cells [6] but do not actually answer the question: what
has made the pHi alkaline, as we will demonstrate in this study.

V-ATPase is generally employed in the membrane of intra-
cellular compartments and used to acidify compartments like
endosome or lysosome [23,24]. It is also used in plasma mem-

brane for acidification of the extracellular space only in spe-
cialized cells such as osteoclasts and kidney cells. However,
there have been no experimental data supporting the proposal

that V-ATPase is localized in the plasma membrane of cancer
tissue cells, to the best of our knowledge, except for studies
reporting that the H+ pump is localized in the plasma mem-
brane of certain metastasizing cancer cell lines [25,26]. Na+/

H+ exchangers are an interesting case, which are driven by
both the gradients of Na+ and H+ with Na+-in being with
the gradient and H+-out against the gradient when reversing

pHi and pHe. We will demonstrate here that the potential gen-
erated by Na+-in is insufficient to drive H+-out in cancer tis-
sues. Lactic acid [CH3CH(OH)CO�

2 + H+] exporters like

MCT1 are used by possibly all cancers in a sustained manner,
as long as the acid is continuously produced by cancer cells

[27]. We will demonstrate that for cells relying on the Warburg
effect for adenosine triphosphate (ATP) production, lactic acid
exporters do not contribute to intracellular alkalization.

Overall, the existing proposals did not adequately answer
the question about the observed reversal of the pHi and pHe

levels. Hence, further studies are needed. We have previously
proposed a fundamentally different reason for the considerable

alkalization of the pHi in cancer tissue cells for most, possibly
all cancer types [28].

Chronic inflammation is known to be causally linked to

cancer onset and development [29], giving rise to increased
local concentrations of H2O2. Once the H2O2 concentrations
reach beyond a certain level, local red blood cells may become

senescent due to the oxidation of their plasma membranes and
their lack of a membrane repair mechanism [30], leading to
their engulfment by macrophages [30] and local accumulation

of irons released by macrophages after engulfment [31]. Under
the condition of immune responses, local epithelial cells will
sequester the free irons [32], leading to an overload of intracel-
lular irons. It has been widely reported that multiple chronic

inflammatory diseases [33] and many, possibly all cancer tis-
sues have iron overload [34]. It is noteworthy that when both
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the H2O2 and Fe2+ levels are sufficiently high, Fenton reac-
tion: Fe2+ + H2O2 ? Fe3+ + �OH + OH�, an inorganic
reaction without involving any enzymes, will happen [35],

regardless being cancer or non-cancerous tissues. Fenton reac-
tions have been widely observed in cancer tissues [36–38], and
their levels are generally considerably higher in cancer com-

pared with related non-cancerous disease tissues, as shown in
Figure S1. Our previous work has discovered that all cancer
tissue cells have Fenton reactions in their cytosol, mitochon-

dria, extracellular matrix, and cell surface, respectively, and
the reactions will continue if there are reducing molecules
nearby that can convert Fe3+ back to Fe2+ such as superoxide
(O��

2 Þ, NADH, or vitamin C [28]. In addition, all cancers use

O��
2 , generated by local immune cells and mitochondria of

the cancer cells, as the main reducing molecules, which drives
the cytosolic Fenton reactions continuously in the following

form: O��
2 + H2O2 ? �OH + OH� + O2, referred to as the

Haber–Weiss reaction with Fe2+ serving as a catalyst [39,40].

Furthermore, the rates of the cytosolic Fenton reactions in
cancer can quickly saturate the pHi buffer, hence driving the
cytosolic pH up if the persistently produced OH� is not neu-

tralized. It is noteworthy to emphasize that persistent intracel-
lular Fenton reaction is the result of chronic inflammation
coupled with local iron overload, without involving any
enzymes. One reliable way for computationally estimating

the level of (cytosolic) Fenton reaction is through checking
the level of 20S proteasome genes. The 20S proteasome is
solely responsible for degradating protein aggregates formed

due to interaction between hydroxyl radical (�OHÞ and pro-
teins, where �OH can only be produced intracellularly by Fen-
ton reaction [28].

Now the question is: how do such Fenton reaction-affected
cells keep their pHi within a viable range? We have previously
proposed a model regarding how cancer tissue cells reprogram
numerous metabolisms [termed as reprogrammed metabolisms

(RMs)] to produce H+ together at rates comparable to those
of the cytosolic Fenton reactions, hence keeping their pHi

stable. The model is strongly supported by the observation

that each of these RMs is found to produce more H+ or con-
sume fewer H+ than its original metabolism [41]. The key
RMs include (1) de novo biosynthesis of nucleotides; (2) the

Warburg effect for ATP production; (3) simultaneous biosyn-
thesis and degradation of triglyceride; and (4) overproduction
and deployment of sialic acids and gangliosides. Here, we pre-

sent a computational modeling analysis to provide further evi-
dence that the RMs in each cancer tissue are indeed induced to
produce H+ collectively at a rate comparable to the average
rate of the cytosolic Fenton reaction. We also demonstrate

that phenotypes known to be associated with specific cancer
(sub)types can be naturally explained in terms of the induced
RMs.

Results

In this study, we conducted a modeling analysis to estimate
quantitatively the level of cytosolic Fenton reaction in each
cancer tissue and a regression analysis to predict which RMs
are induced to produce H+ to keep the pHi stable in the sam-

ples, followed by an association analysis between the known
phenotypes or specific (sub)types and selected RMs in the rel-
evant tissue samples. Overall, we applied our analyses to 4750
cancer samples, along with 503 matching control samples,
across 9 cancer types (11 subtypes). All the samples were based
on the transcriptomic data from The Cancer Genome Atlas

(TCGA) database, and the single-cell RNA sequencing
(scRNA-seq) data of head and neck squamous cell carcinoma
(HNSC) and melanoma were used to validate our results.

pH reversal by transporters?

Multiple proposals have been made regarding the possible

causes of intracellular alkalization and extracellular acidifica-
tion in cancer. One popular model is that Na+/H+ exchang-
ers, particularly NHE1 (SLC9A1), are the main reason for

the reversal of pHi and pHe in cancer tissues, along with
monocarboxylate-H+ efflux cotransporters MCT1 (SLC16A1)
and MCT4 (SLC16A3) and carbonic anhydrases for CO2

hydration [1]. Here we demonstrate that this possibility is low.

We found that among the nine cancer types under study,
SLC9A1 was up-regulated in only three [breast invasive carci-
noma (BRCA), HNSC, and thyroid carcinoma (THCA)]

types, and down-regulated in six other types, as detailed in
Table S1, indicating that SLC9A1 may not play a key role in
most of the cancer types.

While ATP is known to be involved in the activation of
SLC9A1, ATP is not involved in driving the transport [42].
Hence, the transporter is driven solely by gradients. Notably,
the reversal of pHi and pHe requires the transporter to move

intracellular H+ against the gradient out of the cell, indicating
that the action must be driven by the gradient between the
extracellular and intracellular sodium concentrations. It is

known that the normal intracellular sodium concentration
(ISC) ranges from 10 to 15 mmol/l, hence 12 mmol/l being
used here, and the extracellular sodium concentration (ESC)

is 140 mmol/l [43]. The total sodium concentration (TSC) in
cancer (TSCC) is generally 2–3 folds of the matching normal
one (TSCN) [44,45]. The ratio between the extracellular and

intracellular volumes in a unit tissue is 20:80 [46]. Our goal
is to estimate the ISC in cancer (ISCC), assuming that the
ESC (equivalent to blood sodium concentration) remains
roughly stable. Hence, we have

TSCC ¼ k TSCN; with 2 � k � 3;

and TSC ¼ 0:2� ESCþ 0:8� ISC ð1Þ
By plugging the relevant numbers, we have

TSCC ¼ 0:2� 140þ 0:8� ISCC;

and TSCN ¼ 28þ 0:8� ISCN ¼ 37:6 ð2Þ
For k = 2, we have TSCC = 28 + 0.8 � ISCC =

2 � TSCN = 75.2, and thus ISCC = 47.2/0.8 = 59. For
k = 3, we have ISLC = 106. We conclude that the ISCC

should range from 59 to 106 mmol/l. Therefore, the ISC of a
cancer tissue is on average 4.92–8.83 folds that of the matching
normal tissue. Hence, the free energy gained for moving Na+

into the cells from the extracellular space for cancer cells can
be calculated as follows:

DGNaþ � ZFVþ RT ln
Naþ in

Naþout

� �

¼ 1� 96485:3� ð�0:07Þ þ 8:31� 310 ln
59

140

� �
ð3Þ
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where Z = 1; F = 96,485.3 is the Faraday constant; V is the

transmembrane potential (�0.07 meV inside membrane and 0
outside the membrane); R is the gas constant; and T is the tem-
perature (room temperature). Similarly, the free energy needed

for moving an intracellular H+ out of a cancer cell, using
pHe = 6.6 and pHi = 7.4, can be calculated as follows:

DGHþ ¼ ZFV þ RT ln
Hþ

out

Hþ
in

� �

¼ 1� 96485:3� 0:07ð Þ þ 8:31� 310 ln
10�6:6

10�7:4

� �
ð4Þ

Therefore, the total free energy for Na+-in and H+-out is

DGNaþ þ DGHþ . Note that the first terms in the two free ener-
gies cancel each other, and the total free energy is:

DGNaþ þ DGHþ �

8:31� 310� ln
59

140

� �
þ ln

10�6:6

10�7:4

� �� �
¼ 8:31� 310� 0:978 ¼ 2519 J ð5Þ

The positive free energy indicates that the energy generated
by Na+ import is insufficient to change the pHe to 6.6 and the

pHi to 7.4, actually not even to pHe = 6.8 and pHi = 7.2 by
SLC9A1. This calculation result is also experimentally sup-
ported [42]. It is noteworthy that the lower bound is used for

the ISCC. Hence, a higher level of such concentration will
make it more unlikely for the sodium gradient to drive the
reversal of pHe and pHi. Furthermore, the blood sodium con-

centrations in cancer patients are generally reduced, a widely
known fact [47], suggesting that the actual DGNaþ + DGHþ is
higher than the value given in Equation (5).

Interestingly, the reversal of pHe and pHi is potentially

achievable by SLC9A1 in normal tissue cells, where the ratio
between intracellular and extracellular Na+ is 12:140, with

DGNaþ þ DGHþ ¼

8:31� 310� ln
12

140

� �
þ ln

10�6:6

10�7:4

� �� �
¼ 8:31� 310� �0:615ð Þ ¼ �1583 J ð6Þ

suggesting the possibility of reversing pHe and pHi by
SLC9A1.

The conclusion here is that SLC9A1 could not accomplish
the observed reversal of pHe and pHi because the Na+-in
potential is considerably reduced in cancer due to the

decreased ratio between intracellular and extracellular Na+

concentrations.
Lactic acid exporters SLC16A1 and SLC16A3 have also

been suggested to play a role in intracellular alkalization in
cancer. We can see from the following that this also is not true,
when coupled with the Warburg effect. Note that ATP produc-
tion by fermenting glucose is pH neutral as given below [48]:

glucose + 2ADP3� + 2HPO4
2� ! 2 lactate� + 2 ATP4� ð7Þ

which generates only a lactate but not lactic acid (lac-
tate + H+) per ATP produced. Now, the question is where

the H+ comes from when SLC16A1/SLC16A3 releases a lactic
acid. Note that ATP hydrolysis (or consumption) produces
one net H+ regardless of how the ATP is produced:

ATP4� + H2O ! ADP3� + HPO4
2� + Hþ ð8Þ
Hence, the Warburg effect coupled with ATP hydrolysis
produces one net H+, which is co-released with the lactate.
As a side note, ATP production by respiration consumes one

H+ for each ATP produced:

ADP3� + HPO4
2� !ATP4� + OH� ð9Þ

Hence, ATP production by respiration coupled with ATP
hydrolysis is pH neutral. This is a fundamental difference
between the two ATP production pathways.

We conclude that while SLC16A1/SLC16A3 contributes to
the extracellular acidification, it does not contribute to the
intracellular alkalization. Our previous work has provided

strong evidence that cancer cells release the lactic acids mainly
for modulating immune responses rather than pH homeostasis
[49].

Carbonic anhydrases, particularly CA4 and CA7, have

been suggested to play important roles in extracellular acidifi-
cation in cancer. As shown in Table S2, CA4 was either down-
regulated or expressed at very low levels across all cancer

types, except for stomach adenocarcinoma (STAD) where
the expression slightly increased but remained at a very low
level. Similarly, CA7 was down-regulated or expressed at very

low levels, except for THCA. These results indicate that the
two genes do not play much roles in extracellular acidification
in all nine cancer types.

Estimation of OH� production rates by cytosolic Fenton reac-

tions

Our goal here is to construct a reliable metabolic network lead-

ing to cytosolic Fenton reaction and to estimate accurately the
rate of the OH� production by the Fenton reaction based on
transcriptomic data of the available cancer tissues.

To model the rate of the persistent cytosolic Fenton reac-
tion: O��

2 + H2O2 ? �OH+OH� +O2 (with Fe2+ as the cat-

alyst), we need to estimate the concentration of each of the
three reactants: H2O2, O

��
2 , and Fe2+, and how each product

is related to the reactants. Figure 1A depicts our constructed
map of iron metabolic reactions in a human cell, which con-
sists of three sources to the cytosolic Fe2+ pool, namely fer-

rous ion import, ferric ion import and reduction, and heme
import and reduction; four sinks for the cytosolic Fe2+,
namely mitochondrial Fe-S cluster, heme synthesis, ferrous

ion export, and Fenton reaction; and sources and sinks of
the O��

2 and H2O2, totaling eight. The 15 metabolic branches

were each considered as a metabolic module, each containing
one to a few dozen of metabolic genes, whose expression levels
were utilized to estimate their metabolic flux. Detailed infor-

mation about gene names and rationale is given in Table S3.
We have recently developed a graph neural network-based

method for predicting sample-specific metabolic rate, named
single-cell flux estimation analysis (scFEA) [50]. Specifically,

scFEA models metabolic fluxes in each tissue based on gene
expression data of a large number of tissue samples, under
two simple and reasonable assumptions: (1) the total influx

of each metabolite is approximately the same as its total out-
flux; and (2) changes in the outflux of each metabolite can be
modeled as a (non-linear) function of changes in the expression

levels of genes involved in producing the metabolite. Note that
assumption (1) is generally true unless some major in-/out-flux



Figure 1 Estimation of Fenton reaction levels

A. A predicted map for iron metabolism relevant to cytosolic Fenton reaction in human cell. Reactions and metabolites are represented by

blue rectangles and green ovals, respectively. B. Computational model of scFEA. Each metabolic reaction (or module) is modeled as a

neural network of genes involved in the module. The parameters of the neural network were derived by minimizing the total flux

imbalance of intermediate metabolites, an indicator for the quality of a predicted model. scFEA, single-cell flux estimation analysis.
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for a metabolite is not considered. Assumption (2) is a combi-
nation of two simpler assumptions: (i) the concentration of an

enzyme is an (invertible) function of the concentrations of its
reactants; and (ii) this concentration is also a (non-linear) func-
tion of the expression level of its encoding gene, with both

functions being invariant across different samples of different
cancer types. Both assumptions (1) and (2) are supported by
published studies [51–53]. Intuitively, one can think this model
as an integrated Michaelis–Menten model, whose parameters

are implicitly estimated using the large number of available
gene expression data.

Figure 1B outlines the workflow with further details given

in Materials and Methods. Specifically, based on the two
assumptions, scFEA models the metabolic flux of each module
by a three-layer fully connected neural network of genes

involved in the module, which minimizes the total imbalance
of the intermediate substrates across all tissue samples. For a
network with X modules, there are 12X� ð#genesÞ unknowns
to be estimated with #genes being the number of genes
encoded in each reaction representing module, which is gener-

ally a small integer; and there are K�N constraints, where K
and N are the numbers of intermediate substrates and samples,
respectively. Hence, a network like the one depicted in

Figure 1A, a transcriptomic dataset of more than 2000 samples
such as the TCGA pan-cancer (and two selected scRNA-seq)
data, should enable reliable estimation of the unknowns.

We have previously validated the scFEA algorithm on

human global metabolic map and central metabolic pathways
by using two sets of matched scRNA-seq and tissue metabolo-
mic data [50]. Here, we further validated scFEA on the curated

iron ion metabolic modules by applying the method on our
recently collected scRNA-seq data of 168 patient-derived pan-
creatic cancer cell lines Pa03c under four conditions: normoxia

(N), hypoxia (H), normoxia and knockdown of APEX1
(N-APEX1-KD), and hypoxia and knockdown of APEX1
(H-APEX1-KD). APEX1 plays a central role in the cellular
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response to oxidative stress [54]. Our recent studies identified
that knockdown of APEX1 results in increased oxidative stress
and cell death in Pa03c cells [55]. scFEA predicted that the

levels of Fenton reaction, proteasome activity, and iron-
sulfur cluster biosynthesis in normoxic cells were higher than
those in hypoxic cells (Figure S2). These observations matched

(1) the decreased levels of Fenton reactions under hypoxia con-
dition due to the lack of oxygen and hydrogen peroxide, and
(2) the decreased levels of tricarboxylic acid cycle-related

iron-sulfur cluster-containing proteins. In addition, we
observed that the level of ferric iron reduction was largely sup-
pressed in APEX1-KD cells, as the overrepresented reactive
oxygen species (ROS) might deplete ferrous iron pool in the

cell (Figure S2).
These observations demonstrated that the scFEA predic-

tion can capture the major variations in iron ion metabolisms

under different biochemical conditions. We also conducted a
robustness analysis by using TCGA data. Similar to our past
validation of scFEA [50], we randomly shuffled the gene

expression profile of each iron ion metabolic genes in a certain
proportion of samples and evaluated the total loss with respect
to the level of perturbation. We observed higher total losses

when perturbing more samples, which further demonstrated
that the iron ion metabolic gene expression truly forms certain
dependency over the curated metabolic modules (Figure S3).

Iron metabolism in human cancer

We first applied scFEA on all the samples of 9 cancer types
and 11 subtypes (see Materials and Methods) compared with

controls to predict the flux rates of the iron metabolism, as
depicted in Figure 1A. Key prediction results are summarized
in Figure 2.

Figure 2A summarizes the predicted uptake level of iron.
Overall, five cancer (sub)types exhibited elevated iron uptake
levels, including BRCA_TNBC (P = 0.043), colon adenocar-

cinoma (COAD; P = 2E�16), kidney renal clear cell carci-
noma (KIRC; P = 0.02), lung adenocarcinoma (LUAD;
P = 1E�10), and STAD (P = 1E�7); three showed reduced
iron uptake levels, namely HNSC (P = 0.02), kidney renal

papillary cell carcinoma (KIRP; P = 1E�5), and THCA
(P = 3E�15); and three had approximately the same levels:
BRCA_Luminal, BRCA_HER2, and prostate adenocarci-

noma (PRAD). We also predicted the levels of five exits for
cytosolic Fe2+, namely ferritin synthesis, heme, Fe-S cluster,
Fe2+ export, and Fenton reaction, in cancers vs. controls.

Overall, we observed that 10 out of the 11 cancer subtypes
Figure 2 Predicted iron fluxes

The predicted fluxes are relative flux levels scaled by a hyperparameter.A

control samples of each cancer type (X-axis).B.Predicted average cytoso

heme synthesis, Fe-S cluster synthesis, Fe2+ export, andFenton reaction

C. Predicted average cytosolic Fenton reaction levels (Y-axis) in canc

Predicted average proteasome levels (Y-axis) in cancer and adjacent cont

difference of relative Fenton reaction levels in cancer and control tissues

predicted proteasome activity level (X-axis) and cancer growth rate (Y

BRCA, breast invasive carcinoma; TNBC, triple-negative breast cancer

cell carcinoma; KIRC, kidney renal clear cell carcinoma; KIRP, kidn

PRAD, prostate adenocarcinoma; STAD, stomach adenocarcinoma; T
displayed higher cytosolic Fe2+ exit levels in cancer samples
compared to their adjacent controls (P < 1E�3, except for
KIRP), which is mostly due to the increased Fe-S biosynthesis

and Fenton reaction, as detailed in Figure 2B. Furthermore,
all 11 cancer subtypes displayed increased Fenton reaction
levels compared with control tissues (Figure 2C), among which

COAD (P= 6E�18), HNSC (P= 0.02), KIRP (P= 9E�12),
LUAD (P = 8E�21), PRAD (P = 0.004), STAD (P = 0.01),
and THCA (P = 9E�17) show significant changes, while

BRCA_TNBC, BRCA_Luminal, BRCA_HER2, and KIRC
exhibited slight but insignificant increases. On average, our
prediction suggests that the Fenton reaction involves 39%–
44% of the cytosolic Fe2+ utilization across the 11 cancer

subtypes while more than 95% of the produced Fe3+ stored
in ferritin. Statistics of all the iron ion metabolic modules in
TCGA cancer types are provided in Table S4.

We also evaluated the level of the 20S proteasome which
degrades particularly protein aggregates formed due to reac-
tion with �OH [56] generated by Fenton reactions. Significantly

increased proteasome levels were observed in all cancer types
compared to controls (P < 1E�5, Figure 2D), providing an
independent support for higher levels of cytosolic Fenton reac-

tions in cancer tissues than in controls, knowing that �OH can
only be produced intracellularly by Fenton reactions. The
cytosolic Fenton reaction level could be related to the cell
growth rate (Figure 2E and F), which is discussed in detail

below.

RMs induced for H
+

production by alkalizing pHi

We have previously hypothesized that RMs observed in cancer
tissue cells of the same cancer type are predominantly induced
by cytosolic Fenton reactions to neutralize the OH� produced

by the reactions. The rationale for this hypothesis is a highly
significant observation that two totally unrelated sets of reac-
tions, namely cytosolic Fenton reactions and the total OH�

produced by the observed RMs are strongly statistically corre-
lated [41]. In addition, multiple evidence strongly suggests that
these two sets of reactions are causally linked and furthermore,
Fenton reactions drive the induction of the RMs observed in

each tissue sample but the other way around. Specifically, Fen-
ton reaction is solely the result of increased innate immune
responses, giving rise to increased H2O2 concentration and

local iron overload and intracellular sequestration. In addi-
tion, none of the H+-producing RMs studied contribute to
increased immunity or iron overload, based on our extensive

literature review. Furthermore, OH�-producing Fenton reac-
. Predicted average iron import rates (Y-axis) in cancer and adjacent

lic Fe2+metabolic rates (Y-axis) by ferritin synthesis, mitochondrial

, in cancer and adjacent control samples of each cancer type (X-axis).

er and adjacent control samples of each cancer type (X-axis). D.

rol samples of each cancer type (X-axis).E.Correlation between the

(X-axis) and cancer growth rate (Y-axis). F.Correlation between the

-axis). *, P < 0.1; **, P < 0.05 (statistically significant difference).

; COAD, colon adenocarcinoma; HNSC,head and neck squamous

ey renal papillary cell carcinoma; LUAD, lung adenocarcinoma;

HCA, thyroid carcinoma.
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Table 1 The 43 RMs with names and marker genes

RM Marker gene

Arginine transportation SLC7A1, SLC7A2, SLC7A4

Beta-oxidation ACAD10, ACAD9, ACADVL, CPT1A, ECH1, ECHS1, HSD17B10, EHHADH

Ceramide synthesis SPTLC3, SPTLC1, SPTLC2, SPTSSA, KDSR, CERS1, DEGS1, SMPD1, SMPD2, SMPD4, SGMS1, SGMS2, SAMD8

Choline production SLC44A1, SLC44A2, SLC44A3, CHKA, CHKB, PCYT1A, PCYT1B, CEPT1, CHPT1, AGMO, LYPLA1, LYPLA2, GDPD5, GPCPD1, HSD11B2, HSD17B2, AGPS, AGPAT1, LPIN1, PLA2G4A

Chondroitin sulfate synthesis XYLT1, XYLT2, B4GALT7, B3GALT6, B3GAT1, B3GAT2, B3GAT3, CSGALNACT1, CSGALNACT2, CHSY3, CHPF, CHSY1, UST, CHST1, CHST2, CHST3, CHST7, CHST11, CHST12, CHST13, CHST15

Circadian rhythm NPAS2, PER3, PER2, CSNK1D, CRY1, BHLHE41, BHLHE40, NR1D1, CRY2, CSNK1E, PER1, CLOCK, ARNTL

Fatty acid synthesis FASN, MCAT, RPP14, RPP14, ACACA, ACACB

Fatty acid transporter SLC27A1, SLC27A2, SLC27A3, SLC27A4, SLC27A5, SLC27A6, FABP1, FABP2, FABP3, FABP4, FABP5, FABP6, FABP7, FABP9, PMP2

Gluconeogenesis-specific MDH1, MDH2, PC, PCK1, ENO1, ENO2, ENO3, BPGM, PGAM1, PGAM2, PGK1, PGK2, GAPDH, GAPDHS, ALDOA, ALDOB, ALDOC, FBP1, FBP2, GPI, G6PC, G6PC2, G6PC3, HK1, HK2, HK3, GCK,

HKDC1, PFKL, PFKM, PFKP, TPI1, PKLR, PKM

Glutaminolysis ME1, GOT2, GLS, SLC25A1, MDH2, ACLY, CS, SLC25A11, SLC25A13, OGDH, SDHA, SDHB, SDHC, SDHD, FH

Heparan sulfate synthesis XYLT1, XYLT2, B4GALT7, B3GALT6, B3GAT1, B3GAT2, B3GAT3, EXTL2, EXTL3, A4GNT, EXT1, EXT2, EXTL1, HS2ST1, GLCE, NDST1, NDST2, NDST3, NDST4, HS3ST1, HS3ST3A1, HS3ST3B1,

HS3ST2, HS3ST4, HS3ST5, HS3ST6, HS6ST1, HS6ST2, HS6ST3

Hyaluronic acid synthesis PGM1, PGM2, UGP2, UGDH, GFPT1, GFPT2, GNPNAT1, PGM3, UAP1, HAS1, HAS2, HAS3

Keratan sulfate synthesis CHST1

Lysine degradation AASS, ALDH7A1, AADAT, DHTKD1, GCDH, ECHS1, HADH, HSD17B10, ACAT1, ACAT2

Mevalonate pathway ACAT1, ACAT2, HMGCS1, HMGCS2, HMGCR, MVK, PMVK, MVD, IDI1, IDI2, GGPS1, FDPS

N-glycosylation complex synthesis phase MGAT1, MAN2A1, MAN2A2, MGAT2, FUT8, MGAT3, MGAT4A, MGAT4B, MGAT4C, MGAT5, MGAT5B, B4GALT1, ST3GAL3, ST6GAL1

N-glycosylation initial phase DPAGT1, ALG13, ALG1, ALG2, ALG11, ALG3, DPM1, DPM2, DPM3, ALG9, ALG12, ALG5, ALG6, ALG8, ALG10, OST4, STT3B, STT3A

N-glycosylation processing phase MOGS, PRKCSH, GANAB, MANEA, MAN1C1, MAN1A2, MAN1B1

O-glycosylation GALNT1, GALNT10, GALNT11, C1GALT1, ST3GAL1, ST3GAL2, GCNT1, GCNT3, GCNT4, GCNT7, B3GNT3

Phospholipid degradation PLA2G6, PTGS1, PTGS2, PTGIS, PTGDS, HPGDS, PTGES, PTGES2, PTGES3, TBXAS1, ALOX5, LTA4H, LTC4S, GGT5, GGT3P, DPEP2, DPEP1

Phospholipid synthesis-PA PGS1, PTPMT1

Phospholipid synthesis-PC CHKA, CHKB, PCYT1A, PCYT1B, CEPT1, CHPT1

Phospholipid synthesis-PE ETNK1, ETNK2, CHKB, PCYT2, CEPT1, EPT1

Phospholipid synthesis-PI CDIPT

Phospholipid synthesis-PS PTDSS1

Proline synthesis ALDH18A1, PYCR1, G6PD, PGLS, PGD, PYCR2

Purine dRN de novo synthesis PPAT, GART, PFAS, PAICS, ADSL, ATIC, IMPDH1, IMPDH2, GMPS, GUK1, NME4, NME1, NME2, NME7, RRM1, RRM2, RRM2B, ADSSL1, ADSS, AK5, AK8, AK3

Purine dRN salvage synthesis PNP, APRT, ADK, ADA, HPRT1, IMPDH1, IMPDH2, GMPS, GUK1, RRM1, RRM2, RRM2B, NME1, NME2, NME4, NME7, ADSSL1, ADSS, ADSL, AK5, AK8, AK3, DGUOK, DCK

Purine RN de novo synthesis PPAT, GART, PFAS, PAICS, ADSL, ATIC, IMPDH1, IMPDH2, GMPS, GUK1, NME4, NME1, NME2, NME7, RRM1, RRM2, RRM2B, ADSSL1, ADSS

Purine RN degradation ADA, PNP, PGM2, RPE, RPIA, TKT, TALDO1

Pyrimidine dRN de novo synthesis CAD, CMPK1, NME1, NME2, CTPS2, CTPS1

Pyrimidine dRN salvage synthesis DCK, CDA, TK1, TK2, TYMS, RRM1, RRM2, RRM2B, NME4, NME1, NME2, NME7, DUT, ENPP3, ENPP1, ITPA, DTYMK, NTPCR, CANT1

Pyrimidine RN de novo synthesis CAD, DHODH, UMPS, CMPK1, CMPK2, NME4, NME1, NME2, NME7, CTPS1, CTPS2

Pyrimidine RN degradation CDA, UPP2, UPP1, DPYD, DPYS, UPB1

Pyrimidine RN salvage synthesis CDA, UCK1, UCK2, UCKL1, CMPK1, CMPK2, NME4, NME1, NME2, NME7, CTPS1, CTPS2

Reprogrammed lipid metabolism ACER1, ACER2, ACER3, CERS1, SGPP1, SGPL1, ACLY, FASN, SCD, FFAR1, FFAR2, FFAR3, FFAR4, GPR84, SLC27A3, HADH, HSD17B10, CPT1A, PPP1R14A, ACSL3, PCCB, DGAT1, DGKA, MOGAT1,

LPCAT3, LIPE, PNLIP, LPL, DAGLA, DAGLB, CHKA, PTDSS1, CDIPT, SMPD2, SMPD1, SGMS1, SGMS2, S1PR1, S1PR2, S1PR3, PTGS1, PTGS2, ALOX5, TBXAS1, PTGIS, PTGES, PTGES2, PTGES3,

PTGDS, LTA4H, LTC4S, GGT5, GGT3P, DPEP1, DPEP2, SPHK1

Retinol biosynthesis RDH8, RDH10, RDH12, PNLIP, LIPC, RBP2, RBP1, RBP5, BCO1

Retinol metabolism RDH16, SDR16C5, ALDH1A2, ALDH1A1, ALDH1A3, XDH, LRAT, CES1, CES2, RBP4, CES5A, CES4A

Serine synthesis PHGDH, PSAT1, VPS29, PSPH, SLC1A4, SLC1A5

Sialic acid synthesis GNE, NANS, NANP, CMAS, SLC35A1

Triglyceride degradation LIPE, PNLIP, DAGLB, DAGLA

Triglyceride synthesis GPAM, GPAT2, AGPAT1, MBOAT1, MBOAT7, MOGAT3, MOGAT1, DGAT2, DGAT1, LPCAT1, AGPAT6, LPPR3, LPPR4

Tryptophan degradation TDO2, IDO1, IDO2, AFMID, KMO, KYNU, HAAO, ACMSD, ALDH8A1, DHTKD1, GCDH, ECHS1, HADH, HSD17B10, ACAT1, ACAT2, GOT2, AADAT, CCBL1, CCBL2

Note: RM, reprogrammed metabolism; PA, phosphatidic acid; PC, phosphatidylcholine; PE, phosphatidylethanolamine; PI, phosphatidylinositol; PS, phosphatidylserine; dRN, deoxyribonucleotide;

RN, pyrimidine ribonucleotide.
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Table 2 Contribution scores of RMs that are positively correlated with Fenton reaction levels

RM Averaged contribution score Rate of contribution Net proton

Purine dRN salvage synthesis 0.287 0.818 +1 per purine

Proline synthesis 0.23 1 +1 CO2 per proline

Tryptophan degradation 0.112 0.818 +1 per tryptophan

Pyrimidine RN salvage synthesis 0.094 0.727 +1 per pyrimidine

Pyrimidine dRN salvage synthesis 0.091 0.636 0 or +1 per pyrimidine

Phospholipid synthesis-PE 0.06 0.636 +1 CO2 per PE

Phospholipid synthesis-PA 0.054 0.818 +1 per PA

Phospholipid synthesis-PI 0.053 0.636 +1 per PI

Phospholipid synthesis-PS 0.052 0.455 +4 per PS

Phospholipid degradation 0.047 0.727 0 or +1 per phospholipid

Mevalonate pathway 0.041 0.545 +1 CO2 per farnesyl diphosphate

Gluconeogenesis-specific 0.041 0.545 +1 per pyruvate

Sialic acid synthesis 0.041 0.636 +2 per sialic acid

Fatty acid transporter 0.033 0.909 +1 per fatty acid

Beta-oxidation 0.032 0.455 +1 per fatty acid

Note: +n in column 4 denotes that n protons were produced.
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tions form a natural driver for the simultaneous induction of
numerous RMs, which are distinct across different cancer

types, to keep the pHi stable. The other way around might
require a biological program, which is orders of magnitude
more complex than our current model. Based on these consid-

erations, we tested our hypothesis using a more reliable way
for estimating the quantities of the involved reaction rates.

A total of 43 RMs were analyzed with their names and mar-

ker genes listed in Table 1, including amino-acid biosynthesis
and degradation, purine and pyrimidine biosynthesis, and
lipid and fatty acid biosynthesis. For each RM, its level was
assessed using single-sample Gene Set Enrichment Analysis

(ssGSEA) on individual samples (see Materials and Methods)
[57].

A linear regression analysis of the predicted levels of the

cytosolic Fenton reactions against the levels of the 43 RMs
was performed across all samples of the 9 cancer types (and
11 subtypes) with the L1 penalty for variable selection (see

Materials and Methods). Table 2 shows the RMs, along with
the numbers of H+ and CO2 produced, that are commonly
and positively associated with Fenton reaction levels across

all the samples, where the averaged contribution score and
the rate of contribution represent the averaged regression
parameter and the proportion of cancer types that the RMs
were selected, respectively. Table S5 gives the selected RMs

for each of the 11 cancer subtypes.
Positive associations of the following RMs were identified

in at least 40% of cancer types: purine deoxyribonucleotide

(dRN) salvage synthesis, proline synthesis, tryptophan degra-
dation, pyrimidine ribonucleotide (RN) salvage synthesis,
pyrimidine dRN salvage synthesis, phospholipid synthesis,

phospholipid degradation, mevalonate pathway,
gluconeogenesis-specific, sialic acid synthesis, fatty acid trans-
porter, and beta-oxidation, hence possibly representing the
most commonly selected RMs in all cancers.

The selected RMs together achieved R2 > 0.8 in explaining
the Fenton reaction level across all samples of the 11 cancer
subtypes (Figure 3A). Specifically, purine, pyrimidine, and pro-

line syntheses and tryptophan degradation showed the stron-
gest associations with the predicted Fenton reaction levels
and were commonly induced in more than 80% cancer types.
It is noteworthy that nucleotide biosynthesis represents the
most powerful acidifier, knowing that de novo synthesis of a

purine produces 8–9 net H+ and that of pyrimidine produces
3–5 net H+ per nucleotide. Furthermore, proline synthesis is
known to accelerate the glycolysis pathway [58] and also an

effective producer of acids, as detailed below [41]:

glutamate + ATP + G6P ! proline + ADP + Pi + R5P + CO2

ð10Þ
which produces one CO2 with per proline synthesized. Cancer

generally utilizes a truncated tryptophan degradation pathway,
whose end-product is kynurenine or 3-hydroxyanthrranliate
rather than the usual acetyl-CoA for the full degradation path-

way. There could be two possible reasons for the employment
of the truncated pathway: (1) this process produces net H+;
and (2) both end-products promote cell survival under immune

attacks [59].

Linking cancer phenotypes to Fenton reaction levels and induced

RMs

Given that cellular phenotypes are dictated by the cell metabo-
lisms, we further elucidated the possible relationships between
the cancer phenotypes and the induced RMs.

Cancer growth rate and cytosolic Fenton reaction level

For each of the 11 cancer subtypes, we collected the average
time needed for a tumor to double its volume, as detailed in

Table 3. We observed a strong positive correlation, Pearson
correlation coefficient (PCC) = 0.635 (P= 0.036) (Figure 2E),
between the increase in the relative Fenton reaction levels in

cancer tissues and adjacent control tissues, defined as the pro-
portion of Fenton reaction among the total flux of the five
cytosolic Fe2+ outfluxes (Figure 2B), and the tumor-growth

rate, defined as 365
days for tumor doubling

. In addition, a stronger cor-

relation was observed between the averaged 20S proteasome
level and tumor growth rate, with PCC = 0.838 (P = 0.001)

(Figure 2F). These findings provide strong evidence that the
cytosolic Fenton reaction level plays a key role in determing
the rate of cancer growth.



Figure 3 A linear regression analysis of Fenton reaction levels vs. H+
-producing RMs

A. Scatter plots showing the predicted Fenton reaction level (Y-axis) vs. the repression model prediction (X-axis) in 11 cancer subtypes. B.

Scatter plot showing the known cancer metastasis rate (Y-axis) vs. the sialic acid accumulation rate. The sialic acid accumulation rate was

a combined rate of sialic acid synthesis and degradation, and the sialic acid degradation rate was determined by the expression of the sialic

acid degradation gene NEU1.

Table 3 Average time needed to double the tumor size across 11

cancer subtypes

Cancer type Median doubling time (day)

BRCA TNBC 103

ER+ 241

HER2 162

COAD 10

HNSC 99

KIRC 667

KIRP 504

LUAD 214

PRAD 900

STAD 300

THCA 803

Note: BRCA, breast invasive carcinoma; TNBC, triple-negative breast

cancer; COAD, colon adenocarcinoma; HNSC, head and neck squa-

mous cell carcinoma; KIRC, kidney renal clear cell carcinoma; KIRP,

kidney renal papillary cell carcinoma; LUAD, lung adenocarcinoma;

PRAD, prostate adenocarcinoma; STAD, stomach adenocarcinoma;

THCA, thyroid carcinoma.
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Cancer metastasis and sialic acid accumulation

Previous studies have suggested that the high level of sialic acid

accumulation on cancer surface is associated with a high
metastasis rate. We collected the metastasis rate of each cancer
type under consideration and the synthesis of sialic acids. A

positive correlation, PCC = 0.55 (P = 0.09), between the
combined predicted rate of sialic acid synthesis and degrada-
tion and the metastasis rate of a cancer has been observed, pro-

viding strong evidence to the aforementioned speculation. In
addition, we also conducted a regression analysis to fit the can-
cer type-specific metastasis rate against the sialic acid synthesis
rate and the expression of the sialic acid degradation gene

NEU1, giving rise to the following relationship:

Metastasis rate ¼ 1:91� sialic acid synthesis� 0:039�NEU1 ð11Þ
with P values of 0.071 and 0.076 for the two contributors,

respectively. Hence, the analysis suggests a positive association
between metastasis rate and sialic acids synthesis, and a nega-
tive association with sialic acid degradation, which together
implies the rate of accumulation (Figure 3B).



Figure 4 Variations of tumor microenvironments associated with Fenton reaction and OH� levels

A. Differences in immune and stromal cell populations between samples of high and low Fenton reaction levels. B. Differences in immune

and stromal cell populations between samples of high and low OH� levels. C. and D. Predicted Fenton reaction levels (C) and proteasome

levels (D) in each cell type in the GSE72056 dataset. E. and F. Predicted Fenton reaction levels (E) and proteasome levels (F) in each cell

type in the GSE103322 dataset. Both Fenton reaction and proteasome levels were predicted by the relative flux rates. CAF, cancer-

associated fibroblast; NK, natural killer.
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Local immune and stromal cell populations and Fenton reaction

levels

For each cancer type, we selected the 25% of the samples with
the highest Fenton reaction levels, termed as samples with high
Fenton reaction levels, and do the same on the 25% samples

with the lowest Fenton reaction levels, termed as samples with
low Fenton reaction levels. To study if the cytosolic Fenton
reaction levels may be associated with certain immune and

stromal cell types, we applied identification of cell types and
deconvolution (ICTD), an in-house deconvolution method
[60], to estimate the relative proportion of immune and stromal
cells of different types in cancer samples of the nine cancer

types. Our previous analysis demonstrated that ICTD could
robustly identify 21 immune and stromal cell types and esti-
mate their relative proportions by each cell type in TCGA

samples (see Materials and Methods).
In all the nine cancer types, the samples with high Fenton

reaction levels tend to have fewer stromal cells, namely fibrob-

last cells, endothelial cells, muscle cells, adipocytes, and neural
cells (Figure 4A). And such samples were negatively associated
with the CD4+ T-cells and cytokine releasing neutrophils, all

compared to the samples with low Fenton reaction levels. Fur-
thermore, samples with high Fenton reaction levels exhibited
higher proportions of major histocompatibility complex
(MHC) class I/II-expressing cells, total T-cells, total B-cells,

granulocytes, and cytotoxic CD8+ T-cells (Figure 4A).
We also compared the immune and stromal cell popula-

tions between the cancer samples with high and low OH�

levels (Figure 4B). We observed that cancer samples with high
OH� levels were negatively associated with stromal cell popu-
lations and positively associated with MHC class II antigen

presenting cells, total T-cells, and total B-cells, especially the
cytotoxic CD8+ T-cells.

We further conducted similar analyses on scRNA-seq data

of human melanoma and HNSC. The results showed that in
both cancer types, cancer cells had the highest Fenton reaction
and proteasome levels (Figure 4C–F) among all cell types,
which confirmed the aforementioned bulk data-based predic-

tions using the TCGA samples. Other cell type-specific iron
metabolic fluxes of these two datasets are provided in Figures
S4 and S5.

Discussion

Acid–base homeostasis and its persistent disruption are known
to play key roles in, possibly at the roots of, the development
of a wide range of chronic illnesses, ranging from type II dia-
betes, Alzheimer’s disease, and Parkinson’s disease [9,11–13] to

cancer. Here, we provide strong evidence that such disruption
of the pHi, resulting from chronic inflammation and local iron
accumulation, plays a driving role in the induction of a range

of RMs for cell survival. Based on our analysis results, each
cancer (sub)type utilizes a unique combination of RMs at
specific levels (Table S5), together serving as a stabilizer of

the disrupted pHi. Our modeling results strongly suggest that
these induced RMs have given rise to the distinct phenotype
of each cancer (sub)type. This, for the first time, provides a
unified and effective framework for studying all RMs and

cancerous behaviors in a systematic manner.
While our analysis is largely correlation-based, it has strong

causal implications, since Fenton reactions are the results of
chronic inflammation, and such reactions precede a majority
of the metabolic reprogramming in diseases (unpublished
data). With this understanding, our framework can be consid-

ered as that Fenton reactions drive metabolic reprogramming,
which determines the altered cellular behaviors. In this sense,
we propose that Fenton reactions may dictate a specific

cancerous behavior. Note that we have focused on cytosolic
Fenton reactions in this study, while Fenton reactions in other
subcellular locations, namely mitochondria, extracellular

matrix, and cell surface, as we have previously suggested
[28], may lead to some other cancerous behaviors, which we
did not discuss here.

Our analyses demonstrate that all the nine cancer types

select de novo nucleotide biosynthesis as one of the top acidi-
fiers to keep the pHi stable. We observe that most of the nine
cancer types utilize biosynthesis and deployment of sialic acids

and gangliosides as a key acidifier. In addition, lipid metabo-
lism was another major acidifier in a few cancer types.

Our previous work has provided strong evidence that the

rate of de novo biosynthesis of nucleotides may dictate the rate
of cell proliferation [28], hence explaining why different cancer
(sub)types may have distinct proliferation rates as shown in the

Results section. In addition, the rate of sialic acid accumula-
tion has strong implications to the rate of cancer metastasis
[61], thus giving an explanation of why non-small cell lung can-
cer, KIRP, head and neck cancer, and BRCA_HER2+ tend

to have higher metastasis rates compared with others. Further-
more, different compositions of immune and stromal cell types
in the cancer tissues are associated with different levels of Fen-

ton reactions. We anticipate that a variety of other phenotypes
of a cancer could also be naturally explained using this
framework, possibly once Fenton reactions in other subcellu-

lar locations being considered, such as the levels of resistance
to different drugs, the possible secondary locations of metasta-
sizing cancers, and the possibilities of development of

cachexia.
It should be noted that this framework not only provides a

capability for explaining why a cancer (sub)type has specific
phenotypes in terms of the induced RMs, but also enables

studies of the possible relationships among different pheno-
typic characteristics of a cancer such as growth vs. metastatic
rates. For example, we have learned from the Results section

that the relationship between the rates of cancer cell prolifera-
tion and metastasis could be strongly correlated with nucleo-
tide biosynthesis and sialic acid synthesis, respectively, which

tend to serve as the top and the dominant acidifiers in cancer.
Hence, for a given level of OH� production in a cancer, a rel-
atively higher level of nucleotide biosynthesis may imply a
lower level for the sialic acid synthesis, since they together

are utilized as the key acidifiers. We expect that similar argu-
ments can be made about the relationships among other top
acidifiers for a given cancer type.

Fenton reaction and ferroptosis

Both local iron overload and Fenton reaction have been long

and widely observed across numerous cancer types [28]. A nat-
ural question is: do cancer tissue cells tend to undergo ferrop-
tosis? We have noted that among the key enzymes, ACSL4,

LPCAT3, and ALOX15, responsible for converting polyunsat-
urated fatty acids (PUFAs) to PUFA-OOH (the main source
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of lethal lipid peroxides whose production leads to ferropto-
sis), at least two out of the three enzymes were significantly
down-regulated or unchanged in seven out of nine cancer

types, except for STAD (with two enzymes up-regulated), as
detailed in Table S6. Further analyses revealed that the levels
of the cytosolic Fenton reactions showed negative Spearman

correlations with the marker genes for cellular response to
hydroperoxides in all cancer types except for KIRC, LUAD,
and STAD, as detailed in Table S7.

We also analyzed the differential expression of marker
genes in tissue samples at different stages (I–IV) based on
the clinical data retrieved from TCGA. At least one of the
three key markers for ferroptosis, ACSL4, LPCAT3, and

ALOX15, was down-regulated in all cancer types and stages.
On average, 44 out of the 66 Fenton reaction marker genes
were up-regulated in all cancers and stages. These differentially

expressed genes also displayed a trend: the genes become more
up- or down-regulated in advanced stages than in early stages.
Detailed statistics of the differential expression of Fenton reac-

tion and ferroptosis related genes are given in Table S8.
These findings indicate that cytosolic Fenton reactions in

general do not contribute to but possibly prevent the produc-

tion of lethal lipid peroxides, which leads to ferroptosis.
Knowing that cytosolic Fenton reactions generally take place
in either labile iron pool or in some iron-containing proteins
like heme in cancer and that �OH generally travels no more

1 nm [62], we speculate that the �OH produced by Fenton reac-
tions may not reach lipids, say in the membrane in cancers,
and may even take away some Fe2+ from taking part in lipid

peroxidation as our statistics suggest.

Perspective

A key realization from this study is that the links from chronic
inflammation and iron overload to pH-related stress and then
to induced RMs and further to phenotypical features of each

cancer type may represent the backbone of the development
of a cancer, while other changes such as genomic mutations
and epigenomic alterations may predominantly serve as facili-

tators for realization of this evolutionary process, as some
authors have suggested [63], including our own [41]. Compared
to signaling and regulatory processes, metabolic events are

considerably more stable, as shown by common RMs shared
by multiple cancer types. An important implication is that
the issue of ‘‘drug resistance” could be potentially avoided

by focusing on metabolisms rather than signaling/regulatory
processes, since the issue of ‘‘drug resistance” essentially
Table 4 Tumor and normal sample sizes in each cancer type

Abbreviation Cancer type

BRCA Breast invasive carcinoma

COAD Colon adenocarcinoma

HNSC Head and neck squamous cell carcinoma

KIRC Kidney renal clear cell carcinoma

KIRP Kidney renal papillary cell carcinoma

LUAD Lung adenocarcinoma

PRAD Prostate adenocarcinoma

STAD Stomach adenocarcinoma

THCA Thyroid carcinoma
reflects the redundance (or robustness) nature of the signaling
or regulatory processes in human cells and organs, hence sug-
gesting a possibly new direction of enzyme-centric cancer treat-

ment, i.e., to inhibit key enzymes that acidify the cancer
intracellular space and thus kill the cells.

It is noteworthy that this study examines the acid–base

homeostasis and RMs from a perspective of chemical balances.
We did not touch on issues related to the signaling and regula-
tory processes that connect disrupted homeostasis and induc-

tion of certain RMs nor touch on the roles played by
genomic mutations as well as epigenomic activities in these
inductions and their downstream activities. These could repre-
sent as future research directions to provide further mechanis-

tic information about the functional role played by signaling
and regulatory molecules in the induction of acidifying meta-
bolisms. A related issue is to elucidate the possible reasons

why certain metabolisms are induced to reprogrammed in
some cancer types but not in other types, hence possibly lead-
ing to deepened understanding of specific cancer types and

specific cancerous behaviors.

Materials and methods

Data collection

TCGA transcriptomic data

The TCGA RNA-seq v2 Fragments Per Kilobase of transcript,

per Million reads mapped (FPKM) data of the nine cancer
types (11 subtypes) were retrieved from the Genomic Data
Commons (GDC) data portal (https://portal.gdc.cancer.gov/)

using TCGAbiolinks [64]. Table 4 lists the names of the cancer
types along with the information of the numbers of cancer and
control samples. FPKM values were converted to transcripts
per million (TPM) values as the latter is more stable across

samples. Clinical data were obtained in the extensible markup
language (XML) format from GDC and parsed with an in-
house script. GENCODE gene annotations used by the

GDC data processing pipeline were downloaded directly from
the GDC reference files webpage.
scRNA-seq data

We collected two scRNA-seq datasets from the Gene Expres-
sion Omnibus (GEO) database (https://www.ncbi.nlm.
nih.gov/geo/).

The GSE72056 dataset was collected from human mela-
noma tissues. The original paper provided cell classification
Tumor sample count Normal sample count

1091 113

456 41

500 44

530 72

288 32

513 59

495 52

375 32

502 58

24

https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
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and annotations including B-cells, cancer-associated fibroblast
(CAF) cells, endothelial cells, macrophage cells, malignant
cells, NK cells, T-cells, and unknown cells [65].

The GSE103322 dataset was collected from HNSC tissues.
The original paper provided cell classification and annotations
including B-cells, dendritic cells, endothelial cells, fibroblast

cells, macrophage cells, malignant cells, mast cells, myocyte
cells, and T-cells [66]. Notably, as indicated by the original
work, malignant cells have high intertumoral heterogeneity.

Basic processing was conducted using Seurat (v3) [67] with
default parameters to filter out cells with high expression levels
of mitochondrial genes. The cell type label and sample infor-
mation provided in the original work were directly utilized.

Software and statistical methods

ssGSEA

We applied the ssGSEA2.0 R package to estimate the levels of
the selected RMs on individual samples [57]. The enrichment

score (ES) computed by ssGSEA was utilized to represent
the level of each RM. The gene sets of the RMs were collected
and annotated in our previous work [50].

scFEA

We applied our scFEA method on the TCGA and two
scRNA-seq data against the iron metabolic map. While the

details of the method are given in [50], we outline the key ideas
of the algorithm.

The inputs to scFEA are a gene expression dataset and a

factor graph-based representation of the metabolic map. Let

FG C1�K;RM1�M;E ¼ EC!R;ER!Cf g� �
be a given factor graph,

where C1�K ¼ fCk; k ¼ 1; � � � ;Kg is the set of K metabolites,

RM1�M ¼ Rm;m ¼ 1; � � � ;Mf g is the set of M metabolic reac-
tions (represented as a rectangle in Figure 1A), and EC!R

and ER!C represent direct edges from reaction Rm to metabo-
lite Ck and from metabolite Ck to reaction Rm, respectively.
For the k-th metabolite Ck, define the set of reactions consum-

ing and producing Ck as FCk
in ¼ Rmf jðRm ! CkÞ 2 EC!Rg and

FCk
out ¼ Rmf j Ck ! Rmð Þ 2 ER!Cg, which is derived from the sto-

ichiometric matrix of the given metabolic map. For an RNA-
seq dataset with N cells, denote Fluxm;j as the flux of the m-th

reaction in cell j (j ¼ 1; � � � ;N), and Fj ¼ fFlux1;j; � � � ;FluxM;jg
as the whole set of the reaction fluxes. Denote

Gm ¼ Gm
1 ; � � � ;Gm

im

� �
as the genes associated with the reactions

in Rm, and Gm
j ¼ Gm

i1 ;j
; � � � ;Gm

im;j

n o
as their expression levels in

sample j, where im is for the number of genes in Rm.

We model Fluxm;j ¼ fmnn Gm
j jhm

� 	
as a multi-layer fully con-

nected neural network with input Gm
j , where hm represents

the parameters of the neural network. Then hm and cell-wise
flux Fluxm;j can be solved by minimizing the following loss

function L, where k serves as a hyperparameter:

L ¼
XN
j¼1

XK
k¼1

X
m2FCk

in

Fluxm;j �
X

m02FCkout

Fluxm0 ;j

0
B@

1
CA

2

þ k
XN
j¼1

XM
m¼1

Fluxm;j � TAj

 !
2 ð12Þ
where TAj is a surrogate for the total metabolic level of cell j,

which is assigned to a constant or total expression of all the
metabolic genes in j.

It is noteworthy that this formulation defines a new graph
neural network architecture for flux estimation over a factor
graph, where each variable is defined as a neural network of

biological attributes, i.e., the genes involved in each reaction;
and information aggregation between adjacent variables is
constrained by the imbalance between the in- and out-fluxes

of each metabolite.

Regression analysis of Fenton reaction levels vs. RM levels

We conducted a linear regression analysis to fit the Fenton

reaction level against the RM levels across all samples of each
cancer type. The R package glmnet was utilized for the regres-
sion analysis [68]. An L1 penalty was utilized for variable selec-

tion. The hyperparameter k was determined through cross
validation. The RMs positively associated with the Fenton
reaction level in at least 40% of the cancer types under study
were summarized.

Samples with high and low Fenton reaction and OH� levels

We extracted the top and bottom 25% samples in terms of
their predicted Fenton reaction levels in each cancer type as

cancer type-specific high and low Fenton reaction samples.
Similarly, we did that in terms of the OH� levels.

Deconvolution analysis

We utilized our in-house deconvolution method, ICTD, to
estimate the relative proportions among 21 immune and stro-
mal cell types in each TCGA sample [60].

Statistical test of differential analysis

The Mann–Whitney test was used for all differential analysis,

including differential gene expression analysis and the differen-
tial analysis of predicted flux.
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found at https://github.com/changwn and https://github.com/
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